Structural Transformations of Multimetallic Nanoparticles

نویسنده

  • Guangfang Li
چکیده

Atomic-level understanding of the structural transformations of multimetallic nanoparticles (NPs) triggered by external stimuli is of vital importance to the enhancement of our capabilities to precisely fine-tailor the key structural parameters and thereby to fine-tune the catalytic properties of the NPs. In this work, I firstly show that Au-Cu bimetallic NPs demonstrate stoichiometry-dependent architectural evolutions during chemical dealloying processes and nanoporosity-evolving percolation dealloying only occurs for Au-Cu alloy NPs with Cu atomic fractions above the parting limit. The electrochemically active surface areas and the specific activity of the dealloyed nanoframes can be systematically tuned to achieve the optimal electrocatalytic activities. Both the stability and activity of the dealloyed Au nanoframes could be remarkably enhanced by incorporation of residual Ag into Au nanoframes through percolation dealloying of Au-Ag-Cu trimetallic alloy NPs. In addition, catalytic selectivity of dealloyed porous Au nanoframes could be realized by precise control over of the surface atomic coordination numbers of the dealloyed porous Au NPs through percolation dealloying of Au-Cu bimetallic alloys with interior compositional gradients. Besides, nanoscale galvanic replacement reaction induced structural evolutions of Au-Cu bimetallic NPs has also been investigated in details. The compositional stoichiometry and the structural ordering function as two key factors dictating the resulting architectures. Much more sophisticated and fantastic structures have been achieved by coupling galvanic replacement reaction with percolation dealloying or co-reduction. The electrocatalytic activity and the stability of the resulting NPs with controllable geometries have been pushed to a new level. Lastly, I extend the investigation to Au-Ni system with huge lattice mismatch. The success in geometry-controlled syntheses of a series of Au-Ni bimetallic heteronanostructures represents a significant step toward the extension of nanoscale interfacial heteroepitaxy to the ones exhibiting large lattice mismatches and even dissimilar crystalline structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical Activation of CO2 through Atomic Ordering Transformations of AuCu Nanoparticles.

Precise control of elemental configurations within multimetallic nanoparticles (NPs) could enable access to functional nanomaterials with significant performance benefits. This can be achieved down to the atomic level by the disorder-to-order transformation of individual NPs. Here, by systematically controlling the ordering degree, we show that the atomic ordering transformation, applied to AuC...

متن کامل

Controlled Dealloying of Alloy Nanoparticles toward Optimization of Electrocatalysis on Spongy Metallic Nanoframes.

Atomic-level understanding of the structural transformations of multimetallic nanoparticles triggered by external stimuli is of vital importance to the enhancement of our capabilities to fine-tailor the key structural parameters and thereby to precisely tune the properties of the nanoparticles. Here, we show that, upon thermal annealing in a reducing atmosphere, Au@Cu2O core-shell nanoparticles...

متن کامل

Multimetallic Hierarchical Aerogels: Shape Engineering of the Building Blocks for Efficient Electrocatalysis.

A new class of multimetallic hierarchical aerogels composed entirely of interconnected Ni-Pdx Pty nano-building-blocks with in situ engineered morphologies and compositions is demonstrated. The underlying mechanism of the galvanic shape-engineering is elucidated in terms of nanowelding of intermediate nanoparticles. The hierarchical aerogels integrate two levels of porous structures, leading to...

متن کامل

Thermodynamics of nanoalloys.

This article reviews recent advances in our understanding of how temperature affects the structure and the phase of multimetallic nanoparticles. Focusing on bimetallic systems, we discuss the interplay of size, shape and chemical order on the stable configurations at thermal equilibrium. Besides some considerations about experimental evidence for thermally-induced transformations, most insight ...

متن کامل

Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons

The catalytic activity of alloy nanoparticles depends on the particle size and composition ratio of different metals. Alloy nanoparticles composed of Pd, Pt, and Au are widely used as catalysts for oxidation reactions. The catalytic activities of Pt and Au nanoparticles in oxidation reactions are known to increase as the particle size decreases and to increase on the metal-metal interface of al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018